3.7.50 \(\int \frac {a+b \sinh ^{-1}(c x)}{(d+e x^2)^{5/2}} \, dx\) [650]

Optimal. Leaf size=146 \[ -\frac {b c \sqrt {1+c^2 x^2}}{3 d \left (c^2 d-e\right ) \sqrt {d+e x^2}}+\frac {x \left (a+b \sinh ^{-1}(c x)\right )}{3 d \left (d+e x^2\right )^{3/2}}+\frac {2 x \left (a+b \sinh ^{-1}(c x)\right )}{3 d^2 \sqrt {d+e x^2}}-\frac {2 b \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {1+c^2 x^2}}{c \sqrt {d+e x^2}}\right )}{3 d^2 \sqrt {e}} \]

[Out]

1/3*x*(a+b*arcsinh(c*x))/d/(e*x^2+d)^(3/2)-2/3*b*arctanh(e^(1/2)*(c^2*x^2+1)^(1/2)/c/(e*x^2+d)^(1/2))/d^2/e^(1
/2)+2/3*x*(a+b*arcsinh(c*x))/d^2/(e*x^2+d)^(1/2)-1/3*b*c*(c^2*x^2+1)^(1/2)/d/(c^2*d-e)/(e*x^2+d)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.12, antiderivative size = 146, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 9, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.450, Rules used = {198, 197, 5792, 12, 585, 79, 65, 223, 212} \begin {gather*} \frac {2 x \left (a+b \sinh ^{-1}(c x)\right )}{3 d^2 \sqrt {d+e x^2}}+\frac {x \left (a+b \sinh ^{-1}(c x)\right )}{3 d \left (d+e x^2\right )^{3/2}}-\frac {2 b \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {c^2 x^2+1}}{c \sqrt {d+e x^2}}\right )}{3 d^2 \sqrt {e}}-\frac {b c \sqrt {c^2 x^2+1}}{3 d \left (c^2 d-e\right ) \sqrt {d+e x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcSinh[c*x])/(d + e*x^2)^(5/2),x]

[Out]

-1/3*(b*c*Sqrt[1 + c^2*x^2])/(d*(c^2*d - e)*Sqrt[d + e*x^2]) + (x*(a + b*ArcSinh[c*x]))/(3*d*(d + e*x^2)^(3/2)
) + (2*x*(a + b*ArcSinh[c*x]))/(3*d^2*Sqrt[d + e*x^2]) - (2*b*ArcTanh[(Sqrt[e]*Sqrt[1 + c^2*x^2])/(c*Sqrt[d +
e*x^2])])/(3*d^2*Sqrt[e])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 79

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(-(b*e - a*f
))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p + 1)*(c*f - d*e))), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1
) + c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e,
f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || L
tQ[p, n]))))

Rule 197

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x*((a + b*x^n)^(p + 1)/a), x] /; FreeQ[{a, b, n, p}, x] &
& EqQ[1/n + p + 1, 0]

Rule 198

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-x)*((a + b*x^n)^(p + 1)/(a*n*(p + 1))), x] + Dist[(n*(p
 + 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, n, p}, x] && ILtQ[Simplify[1/n + p +
 1], 0] && NeQ[p, -1]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 585

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_))^(r_.), x
_Symbol] :> Dist[1/n, Subst[Int[(a + b*x)^p*(c + d*x)^q*(e + f*x)^r, x], x, x^n], x] /; FreeQ[{a, b, c, d, e,
f, m, n, p, q, r}, x] && EqQ[m - n + 1, 0]

Rule 5792

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u = IntHide[(d + e*x^2
)^p, x]}, Dist[a + b*ArcSinh[c*x], u, x] - Dist[b*c, Int[SimplifyIntegrand[u/Sqrt[1 + c^2*x^2], x], x], x]] /;
 FreeQ[{a, b, c, d, e}, x] && NeQ[e, c^2*d] && (IGtQ[p, 0] || ILtQ[p + 1/2, 0])

Rubi steps

\begin {align*} \int \frac {a+b \sinh ^{-1}(c x)}{\left (d+e x^2\right )^{5/2}} \, dx &=\frac {x \left (a+b \sinh ^{-1}(c x)\right )}{3 d \left (d+e x^2\right )^{3/2}}+\frac {2 x \left (a+b \sinh ^{-1}(c x)\right )}{3 d^2 \sqrt {d+e x^2}}-(b c) \int \frac {x \left (3 d+2 e x^2\right )}{3 d^2 \sqrt {1+c^2 x^2} \left (d+e x^2\right )^{3/2}} \, dx\\ &=\frac {x \left (a+b \sinh ^{-1}(c x)\right )}{3 d \left (d+e x^2\right )^{3/2}}+\frac {2 x \left (a+b \sinh ^{-1}(c x)\right )}{3 d^2 \sqrt {d+e x^2}}-\frac {(b c) \int \frac {x \left (3 d+2 e x^2\right )}{\sqrt {1+c^2 x^2} \left (d+e x^2\right )^{3/2}} \, dx}{3 d^2}\\ &=\frac {x \left (a+b \sinh ^{-1}(c x)\right )}{3 d \left (d+e x^2\right )^{3/2}}+\frac {2 x \left (a+b \sinh ^{-1}(c x)\right )}{3 d^2 \sqrt {d+e x^2}}-\frac {(b c) \text {Subst}\left (\int \frac {3 d+2 e x}{\sqrt {1+c^2 x} (d+e x)^{3/2}} \, dx,x,x^2\right )}{6 d^2}\\ &=-\frac {b c \sqrt {1+c^2 x^2}}{3 d \left (c^2 d-e\right ) \sqrt {d+e x^2}}+\frac {x \left (a+b \sinh ^{-1}(c x)\right )}{3 d \left (d+e x^2\right )^{3/2}}+\frac {2 x \left (a+b \sinh ^{-1}(c x)\right )}{3 d^2 \sqrt {d+e x^2}}-\frac {(b c) \text {Subst}\left (\int \frac {1}{\sqrt {1+c^2 x} \sqrt {d+e x}} \, dx,x,x^2\right )}{3 d^2}\\ &=-\frac {b c \sqrt {1+c^2 x^2}}{3 d \left (c^2 d-e\right ) \sqrt {d+e x^2}}+\frac {x \left (a+b \sinh ^{-1}(c x)\right )}{3 d \left (d+e x^2\right )^{3/2}}+\frac {2 x \left (a+b \sinh ^{-1}(c x)\right )}{3 d^2 \sqrt {d+e x^2}}-\frac {(2 b) \text {Subst}\left (\int \frac {1}{\sqrt {d-\frac {e}{c^2}+\frac {e x^2}{c^2}}} \, dx,x,\sqrt {1+c^2 x^2}\right )}{3 c d^2}\\ &=-\frac {b c \sqrt {1+c^2 x^2}}{3 d \left (c^2 d-e\right ) \sqrt {d+e x^2}}+\frac {x \left (a+b \sinh ^{-1}(c x)\right )}{3 d \left (d+e x^2\right )^{3/2}}+\frac {2 x \left (a+b \sinh ^{-1}(c x)\right )}{3 d^2 \sqrt {d+e x^2}}-\frac {(2 b) \text {Subst}\left (\int \frac {1}{1-\frac {e x^2}{c^2}} \, dx,x,\frac {\sqrt {1+c^2 x^2}}{\sqrt {d+e x^2}}\right )}{3 c d^2}\\ &=-\frac {b c \sqrt {1+c^2 x^2}}{3 d \left (c^2 d-e\right ) \sqrt {d+e x^2}}+\frac {x \left (a+b \sinh ^{-1}(c x)\right )}{3 d \left (d+e x^2\right )^{3/2}}+\frac {2 x \left (a+b \sinh ^{-1}(c x)\right )}{3 d^2 \sqrt {d+e x^2}}-\frac {2 b \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {1+c^2 x^2}}{c \sqrt {d+e x^2}}\right )}{3 d^2 \sqrt {e}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 6 vs. order 3 in optimal.
time = 0.22, size = 139, normalized size = 0.95 \begin {gather*} \frac {-\frac {b c d \sqrt {1+c^2 x^2} \left (d+e x^2\right )}{c^2 d-e}+a x \left (3 d+2 e x^2\right )-b c x^2 \left (d+e x^2\right ) \sqrt {1+\frac {e x^2}{d}} F_1\left (1;\frac {1}{2},\frac {1}{2};2;-c^2 x^2,-\frac {e x^2}{d}\right )+b x \left (3 d+2 e x^2\right ) \sinh ^{-1}(c x)}{3 d^2 \left (d+e x^2\right )^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcSinh[c*x])/(d + e*x^2)^(5/2),x]

[Out]

(-((b*c*d*Sqrt[1 + c^2*x^2]*(d + e*x^2))/(c^2*d - e)) + a*x*(3*d + 2*e*x^2) - b*c*x^2*(d + e*x^2)*Sqrt[1 + (e*
x^2)/d]*AppellF1[1, 1/2, 1/2, 2, -(c^2*x^2), -((e*x^2)/d)] + b*x*(3*d + 2*e*x^2)*ArcSinh[c*x])/(3*d^2*(d + e*x
^2)^(3/2))

________________________________________________________________________________________

Maple [F]
time = 180.00, size = 0, normalized size = 0.00 \[\int \frac {a +b \arcsinh \left (c x \right )}{\left (e \,x^{2}+d \right )^{\frac {5}{2}}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsinh(c*x))/(e*x^2+d)^(5/2),x)

[Out]

int((a+b*arcsinh(c*x))/(e*x^2+d)^(5/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))/(e*x^2+d)^(5/2),x, algorithm="maxima")

[Out]

1/3*a*(2*x/(sqrt(x^2*e + d)*d^2) + x/((x^2*e + d)^(3/2)*d)) + b*integrate(log(c*x + sqrt(c^2*x^2 + 1))/(x^2*e
+ d)^(5/2), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 970 vs. \(2 (125) = 250\).
time = 0.43, size = 970, normalized size = 6.64 \begin {gather*} \frac {{\left (b x^{4} \cosh \left (1\right )^{3} + b x^{4} \sinh \left (1\right )^{3} - b c^{2} d^{3} - {\left (b c^{2} d x^{4} - 2 \, b d x^{2}\right )} \cosh \left (1\right )^{2} - {\left (b c^{2} d x^{4} - 3 \, b x^{4} \cosh \left (1\right ) - 2 \, b d x^{2}\right )} \sinh \left (1\right )^{2} - {\left (2 \, b c^{2} d^{2} x^{2} - b d^{2}\right )} \cosh \left (1\right ) - {\left (2 \, b c^{2} d^{2} x^{2} - 3 \, b x^{4} \cosh \left (1\right )^{2} - b d^{2} + 2 \, {\left (b c^{2} d x^{4} - 2 \, b d x^{2}\right )} \cosh \left (1\right )\right )} \sinh \left (1\right )\right )} \sqrt {\cosh \left (1\right ) + \sinh \left (1\right )} \log \left (c^{4} d^{2} + {\left (8 \, c^{4} x^{4} + 8 \, c^{2} x^{2} + 1\right )} \cosh \left (1\right )^{2} + {\left (8 \, c^{4} x^{4} + 8 \, c^{2} x^{2} + 1\right )} \sinh \left (1\right )^{2} - 4 \, {\left (c^{3} d + {\left (2 \, c^{3} x^{2} + c\right )} \cosh \left (1\right ) + {\left (2 \, c^{3} x^{2} + c\right )} \sinh \left (1\right )\right )} \sqrt {c^{2} x^{2} + 1} \sqrt {x^{2} \cosh \left (1\right ) + x^{2} \sinh \left (1\right ) + d} \sqrt {\cosh \left (1\right ) + \sinh \left (1\right )} + 2 \, {\left (4 \, c^{4} d x^{2} + 3 \, c^{2} d\right )} \cosh \left (1\right ) + 2 \, {\left (4 \, c^{4} d x^{2} + 3 \, c^{2} d + {\left (8 \, c^{4} x^{4} + 8 \, c^{2} x^{2} + 1\right )} \cosh \left (1\right )\right )} \sinh \left (1\right )\right ) - 2 \, {\left (3 \, b c^{2} d^{2} x \cosh \left (1\right ) - 2 \, b x^{3} \cosh \left (1\right )^{3} - 2 \, b x^{3} \sinh \left (1\right )^{3} + {\left (2 \, b c^{2} d x^{3} - 3 \, b d x\right )} \cosh \left (1\right )^{2} + {\left (2 \, b c^{2} d x^{3} - 6 \, b x^{3} \cosh \left (1\right ) - 3 \, b d x\right )} \sinh \left (1\right )^{2} + {\left (3 \, b c^{2} d^{2} x - 6 \, b x^{3} \cosh \left (1\right )^{2} + 2 \, {\left (2 \, b c^{2} d x^{3} - 3 \, b d x\right )} \cosh \left (1\right )\right )} \sinh \left (1\right )\right )} \sqrt {x^{2} \cosh \left (1\right ) + x^{2} \sinh \left (1\right ) + d} \log \left (c x + \sqrt {c^{2} x^{2} + 1}\right ) - 2 \, {\left (3 \, a c^{2} d^{2} x \cosh \left (1\right ) - 2 \, a x^{3} \cosh \left (1\right )^{3} - 2 \, a x^{3} \sinh \left (1\right )^{3} + {\left (2 \, a c^{2} d x^{3} - 3 \, a d x\right )} \cosh \left (1\right )^{2} + {\left (2 \, a c^{2} d x^{3} - 6 \, a x^{3} \cosh \left (1\right ) - 3 \, a d x\right )} \sinh \left (1\right )^{2} + {\left (3 \, a c^{2} d^{2} x - 6 \, a x^{3} \cosh \left (1\right )^{2} + 2 \, {\left (2 \, a c^{2} d x^{3} - 3 \, a d x\right )} \cosh \left (1\right )\right )} \sinh \left (1\right ) - {\left (b c d x^{2} \cosh \left (1\right )^{2} + b c d x^{2} \sinh \left (1\right )^{2} + b c d^{2} \cosh \left (1\right ) + {\left (2 \, b c d x^{2} \cosh \left (1\right ) + b c d^{2}\right )} \sinh \left (1\right )\right )} \sqrt {c^{2} x^{2} + 1}\right )} \sqrt {x^{2} \cosh \left (1\right ) + x^{2} \sinh \left (1\right ) + d}}{6 \, {\left (d^{2} x^{4} \cosh \left (1\right )^{4} + d^{2} x^{4} \sinh \left (1\right )^{4} - c^{2} d^{5} \cosh \left (1\right ) - {\left (c^{2} d^{3} x^{4} - 2 \, d^{3} x^{2}\right )} \cosh \left (1\right )^{3} - {\left (c^{2} d^{3} x^{4} - 4 \, d^{2} x^{4} \cosh \left (1\right ) - 2 \, d^{3} x^{2}\right )} \sinh \left (1\right )^{3} - {\left (2 \, c^{2} d^{4} x^{2} - d^{4}\right )} \cosh \left (1\right )^{2} - {\left (2 \, c^{2} d^{4} x^{2} - 6 \, d^{2} x^{4} \cosh \left (1\right )^{2} - d^{4} + 3 \, {\left (c^{2} d^{3} x^{4} - 2 \, d^{3} x^{2}\right )} \cosh \left (1\right )\right )} \sinh \left (1\right )^{2} + {\left (4 \, d^{2} x^{4} \cosh \left (1\right )^{3} - c^{2} d^{5} - 3 \, {\left (c^{2} d^{3} x^{4} - 2 \, d^{3} x^{2}\right )} \cosh \left (1\right )^{2} - 2 \, {\left (2 \, c^{2} d^{4} x^{2} - d^{4}\right )} \cosh \left (1\right )\right )} \sinh \left (1\right )\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))/(e*x^2+d)^(5/2),x, algorithm="fricas")

[Out]

1/6*((b*x^4*cosh(1)^3 + b*x^4*sinh(1)^3 - b*c^2*d^3 - (b*c^2*d*x^4 - 2*b*d*x^2)*cosh(1)^2 - (b*c^2*d*x^4 - 3*b
*x^4*cosh(1) - 2*b*d*x^2)*sinh(1)^2 - (2*b*c^2*d^2*x^2 - b*d^2)*cosh(1) - (2*b*c^2*d^2*x^2 - 3*b*x^4*cosh(1)^2
 - b*d^2 + 2*(b*c^2*d*x^4 - 2*b*d*x^2)*cosh(1))*sinh(1))*sqrt(cosh(1) + sinh(1))*log(c^4*d^2 + (8*c^4*x^4 + 8*
c^2*x^2 + 1)*cosh(1)^2 + (8*c^4*x^4 + 8*c^2*x^2 + 1)*sinh(1)^2 - 4*(c^3*d + (2*c^3*x^2 + c)*cosh(1) + (2*c^3*x
^2 + c)*sinh(1))*sqrt(c^2*x^2 + 1)*sqrt(x^2*cosh(1) + x^2*sinh(1) + d)*sqrt(cosh(1) + sinh(1)) + 2*(4*c^4*d*x^
2 + 3*c^2*d)*cosh(1) + 2*(4*c^4*d*x^2 + 3*c^2*d + (8*c^4*x^4 + 8*c^2*x^2 + 1)*cosh(1))*sinh(1)) - 2*(3*b*c^2*d
^2*x*cosh(1) - 2*b*x^3*cosh(1)^3 - 2*b*x^3*sinh(1)^3 + (2*b*c^2*d*x^3 - 3*b*d*x)*cosh(1)^2 + (2*b*c^2*d*x^3 -
6*b*x^3*cosh(1) - 3*b*d*x)*sinh(1)^2 + (3*b*c^2*d^2*x - 6*b*x^3*cosh(1)^2 + 2*(2*b*c^2*d*x^3 - 3*b*d*x)*cosh(1
))*sinh(1))*sqrt(x^2*cosh(1) + x^2*sinh(1) + d)*log(c*x + sqrt(c^2*x^2 + 1)) - 2*(3*a*c^2*d^2*x*cosh(1) - 2*a*
x^3*cosh(1)^3 - 2*a*x^3*sinh(1)^3 + (2*a*c^2*d*x^3 - 3*a*d*x)*cosh(1)^2 + (2*a*c^2*d*x^3 - 6*a*x^3*cosh(1) - 3
*a*d*x)*sinh(1)^2 + (3*a*c^2*d^2*x - 6*a*x^3*cosh(1)^2 + 2*(2*a*c^2*d*x^3 - 3*a*d*x)*cosh(1))*sinh(1) - (b*c*d
*x^2*cosh(1)^2 + b*c*d*x^2*sinh(1)^2 + b*c*d^2*cosh(1) + (2*b*c*d*x^2*cosh(1) + b*c*d^2)*sinh(1))*sqrt(c^2*x^2
 + 1))*sqrt(x^2*cosh(1) + x^2*sinh(1) + d))/(d^2*x^4*cosh(1)^4 + d^2*x^4*sinh(1)^4 - c^2*d^5*cosh(1) - (c^2*d^
3*x^4 - 2*d^3*x^2)*cosh(1)^3 - (c^2*d^3*x^4 - 4*d^2*x^4*cosh(1) - 2*d^3*x^2)*sinh(1)^3 - (2*c^2*d^4*x^2 - d^4)
*cosh(1)^2 - (2*c^2*d^4*x^2 - 6*d^2*x^4*cosh(1)^2 - d^4 + 3*(c^2*d^3*x^4 - 2*d^3*x^2)*cosh(1))*sinh(1)^2 + (4*
d^2*x^4*cosh(1)^3 - c^2*d^5 - 3*(c^2*d^3*x^4 - 2*d^3*x^2)*cosh(1)^2 - 2*(2*c^2*d^4*x^2 - d^4)*cosh(1))*sinh(1)
)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {a + b \operatorname {asinh}{\left (c x \right )}}{\left (d + e x^{2}\right )^{\frac {5}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asinh(c*x))/(e*x**2+d)**(5/2),x)

[Out]

Integral((a + b*asinh(c*x))/(d + e*x**2)**(5/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))/(e*x^2+d)^(5/2),x, algorithm="giac")

[Out]

integrate((b*arcsinh(c*x) + a)/(e*x^2 + d)^(5/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {a+b\,\mathrm {asinh}\left (c\,x\right )}{{\left (e\,x^2+d\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*asinh(c*x))/(d + e*x^2)^(5/2),x)

[Out]

int((a + b*asinh(c*x))/(d + e*x^2)^(5/2), x)

________________________________________________________________________________________